Sciencia Acta Xaveriana An International Science Journal ISSN. 0976-1152

Volume 7 No. 1 pp. 47-56 March 2016

EVEN VERTEX EQUITABLE EVEN LABELING FOR

PATH RELATED GRAPHS

A. Lourdusamy¹, J. Shobana Mary² and F.Patrick³

^{1&3} Department of Mathematics,

St. Xavier's College, Palayamkottai - 627002, India.

² M.Sc. Student, Reg. No: 144821ER016,

Department of Mathematics

St. Antony's College of Arts and Science for Women,

Thamaraipadi, Dindigul - 624005, India.

¹Email: <u>lourdusamy15@gmail.com</u>

²Email: jsom17@gmail.com

³Email: <u>patrick881990@gmail.com</u>

Abstract: Let G be a graph with p vertices and q edges and $A = \{0, 2, 4, ..., q + 1\}$ if q is odd or $A = \{0, 2, 4, ..., q\}$ if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling $f: V(G) \to A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \le 1$ and the induced edge labels are 2, 4, ..., 2q, where $v_f(a)$ be the number of vertices v with f(v) = afor $a \in A$. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph. In this paper, we prove that square of path, $S(P_n \odot K_1)$, $S'(P_n), T(P_n)$, graph obtained by duplication of each vertex by an edge in P_n , quadrilateral snake, $S(Q_n)$, $D(Q_n), A(T_n)$ and $DA(T_n)$ are even vertex equitable even graphs.

Keywords: vertex equitable labeling, even vertex equitable even labeling,

AMS Mathematics Subject Classification (2010): 05C78

(Received : 3rd October 2015 ; Accepted : 3rd March 2016)

1. INTRODUCTION

All graphs considered here are simple, finite, connected and undirected. Let G(V, E) be a graph with p vertices and q edges. We follow the basic notations and terminologies of graph theory as in [2]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions and a detailed survey of graph labeling can be found in [1]. The concept of vertex equitable labeling was introduced by Lourdusamy and Seenivasan [3]. We introduced the concept of even vertex equitable even labeling in [4].

Definition 1.1: Let G be a graph with p vertices and q edges and $A = \{0, 2, 4, ..., q + 1\}$ if q is odd or $A = \{0, 2, 4, ..., q\}$ if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling $f: V(G) \to A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \le 1$ and the induced edge labels are 2, 4, ..., 2q, where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph.

Definition 1.2: For a simple connected graph G the square of graph G is denoted by G^2 and defined as the graph with the same vertex set as of G and two vertices are adjacent in G^2 if they are at a distance 1 or 2 apart in G.

Definition 1.3: The subdivision of graph S(G) is obtained from G by subdividing each edge of G with a vertex.

Definition 1.4: The corona $G_1 \odot G_2$ of two graphs $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ is defined as the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and joining the *i*th vertex of G_1 with an edge to every vertex in the *i*th copy of G_2 .

Definition 1.5: For a graph G the *splitting graph* S(G') of graph G is obtained by adding a new vertex v' corresponding to each vertex v of G such that N(v) = N(v').

Definition 1.6: For every vertex $v \in V(G)$, the open neighbourhood set N(v) is the set of all vertices adjacent to v in G.

Definition 1.7: Duplication of a vertex v_k by a new edge $e = v'_k v''_k$ in a graph G produces a new graph G' such that $N(v'_k) \cap N(v''_k) = v_k$.

Definition 1.8: The *total graph* T(G) of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G.

Definition 1.9: A quadrilateral snake Q_n is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i , $u_i + 1$ to new vertices v_i, w_i respectively and then joining v_i and w_i . That is every edge of the path is replaced by a cycle C_4 .

Definition 1.10: A *double quadrilateral snake* $D(Q_n)$ consists of two quadrilateral snakes that have a common path.

Definition 1.11: An alternate triangular snake $A(T_n)$ is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and $u_i + 1$ (alternatively) to newvertex v_i . That is every alternate edge of a path is replaced by C_3 .

Definition 1.12: A *double alternate triangular snake* $DA(T_n)$ consists of two alternate triangular snakes that have a common path. That is, a double alternate triangular snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and $u_i + 1$ (alternatively) to two new vertices v_i and w_i .

2. MAIN RESULTS

Theorem 2.1 The graph P_n^2 is an even vertex equitable even graph.

Proof: Let $u_1, u_2, ..., u_n$ be the vertices of P_n^2 . Then P_n^2 is of order *n* and size 2n - 3.

Define $f: V(P_n^2) \rightarrow A = \{0, 2, 4, \dots, 2n-2\}$ as follows:

$$f(u_i) = 2i - 2 ; 1 \le i \le n.$$

It can be easily verified that the induced edge labels of P_n^2 are 2,4,6, ..., 4n - 6.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph P_n^2 is an even vertex equitable even graph.

Theorem 2.2The graph $S(P_n \odot K_1)$ is an even vertex equitable even graph.

Proof: Let $V(P_n \odot K_1) = \{u_i, v_i: 1 \le i \le n\}$ and

$$E(P_n \odot K_1) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\}$$

Let v'_i be the newly added vertex between u_i and v_i . Let u'_i be the newly added vertex between u_i and u_{i+1} . Then $S(P_n \odot K_1)$ is of order 4n - 1 and size 4n - 2.

Define $f: V(S(P_n \odot K_1)) \rightarrow A = \{0, 2, 4, \dots, 4n - 2\}$ as follows:

$$f(u_i) = \begin{cases} 4i - 2 & \text{if } i \text{ is odd} \\ 4i - 4 & \text{if } i \text{ is even} \end{cases}; 1 \le i \le n$$

$$f(v_i) = \begin{cases} 4i - 4 & \text{if } i \text{ is odd} \\ 4i - 2 & \text{if } i \text{ is even} \end{cases}; 1 \le i \le n$$

$$f(u'_i) = \begin{cases} 4i & \text{if } i \text{ is odd} \\ 4i + 2 & \text{if } i \text{ is even} \end{cases}; 1 \le i \le n - 1$$

$$f(v'_1) = 2;$$

$$f(v'_i) = \begin{cases} 4i - 4 & \text{if } i \text{ is odd} \\ 4i - 2 & \text{if } i \text{ is even} \end{cases}; 2 \le i \le n$$

It can be easily verified that the induced edge labels of $S(P_n \odot K_1)$ are 2,4,6, ..., 8n - 4.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $S(P_n \odot K_1)$ is an even vertex equitable even graph.

Theorem 2.3 The splitting graph $S'(P_n)$ is an even vertex equitable even graph.

Proof: Let $u_1, u_2, ..., u_n$ be the vertices of P_n and $u_1, u_2, ..., u_n, u'_1, u'_2, ..., u'_n$ be the vertices of $S'(P_n)$. Then $S'(P_n)$ is of order 2n and size 3(n-1).

Define
$$f: V(S'(P_n)) \to A = \begin{cases} 0, 2, 4, \dots, 3(n-1) + 1 & \text{if } 3(n-1) & \text{is odd} \\ 0, 2, 4, \dots, 3(n-1) & \text{if } 3(n-1) & \text{is even} \end{cases}$$
 as follows:

Case (i): n is odd n > 3.

$$\begin{split} f(u_1) &= 0 \; ; f(u_2) = 2 \; ; \\ f(u_{n-1}) &= 3(n-1) \; ; \\ f(u_n) &= 3(n-1) - 2 \; ; \\ f(u_i) &= \begin{cases} 3i-1 & \text{if i is odd} \\ 3i-2 & \text{if i is even} } ; 3 \leq i \leq n-2 \end{cases} \end{split}$$

$$f(u'_{1}) = 0; f(v'_{2}) = 2;$$

$$f(u'_{i}) = \begin{cases} 3i - 3 & \text{if } i \text{ is odd} \\ 3i - 6 & \text{if } i \text{ is even} \end{cases}; 3 \le i \le n$$

Case (ii): *n* is even

$$f(u_i) = \begin{cases} 3i-3 & \text{if } i \text{ is odd} \\ 3i-2 & \text{if } i \text{ is even} \end{cases}; 1 \le i \le n$$
$$f(u'_i) = \begin{cases} 3i-1 & \text{if } i \text{ is odd} \\ 3i-4 & \text{if } i \text{ is even} \end{cases}; 1 \le i \le n$$

It can be easily verified that the induced edge labels of $S'(P_n)$ are 2,4,6, ..., 6(n-1).

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $S'(P_n)$ is an even vertex equitable even graph.

Theorem 2.4 The total graph $T(P_n)$ is an even vertex equitable even graph.

Proof: Let $u_1, u_2, ..., u_n$ be the vertices of P_n . Let $V(T(P_n)) = \{u_1, u_2, ..., u_n, u'_1, u'_2, ..., u'_n\}$. Then $T(P_n)$ is of order 2n - 1 and size 4n - 5.

Define $f: V(T(P_n)) \rightarrow A = \{0, 2, 4, \dots, 4n - 4\}$ as follows:

$$f(u_1) = 0;$$

 $f(u_i) = 4i - 6; 2 \le i \le n$
 $f(u'_i) = 4i; 1 \le i \le n - 1$

It can be easily verified that the induced edge labels of $T(P_n)$ are 2,4,6, ..., 8n - 10.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $T(P_n)$ is an even vertex equitable even graph.

Theorem 2.5 The graph obtained by duplication of each vertex by an edge in P_n is an even vertex equitable even graph.

Proof: Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n and G be the graph obtained by duplication of each vertex u_i of the path P_n by an edge $u'_i u''_i$ for $1 \le i \le n$ at a time.

Let $V(G) = \{u_i, u'_i, u''_i : 1 \le i \le n\}$ and $E(G) = \{u_i u'_i, u_i u''_i, u'_i u''_i : 1 \le i \le n\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\}$. Then *G* is of order 3*n* and size 4n - 1. Define $f: V(G) \to A = \{0, 2, 4, ..., 4n\}$ as follows:

$$\begin{split} f(u_i) &= \begin{cases} 4i-4 & \text{if } i \text{ is odd} \\ 4i & \text{if } i \text{ is even} \end{cases}; 1 \leq i \leq n \\ f(u_i') &= 4i-2 \text{ ; } 1 \leq i \leq n \\ f(u_i'') &= \begin{cases} 4i & \text{if } i \text{ is odd} \\ 4i-4 & \text{if } i \text{ is even} \end{cases}; 1 \leq i \leq n \end{split}$$

It can be easily verified that the induced edge labels of G are 2,4,6, ..., 8n - 2.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph obtained by duplication of each vertex by an edge in P_n is an even vertex equitable even graph.

Theorem 2.6 The quadrilateral snake Q_n is an even vertex equitable even graph.

Proof: The quadrilateral snake is obtained from a path $u_1, u_2, ..., u_n$. By joining u_i, u_{i+1} to the new vertices v_i, w_i represented and joining v_i and w_i for $1 \le i \le n-1$. Then Q_n is of order 3n-2 and size 4n-4.

Define $f: V(Q_n) \rightarrow A = \{0, 2, 4, \dots, 4n - 4\}$ as follows:

$$f(u_i) = 4i - 4; 1 \le i \le n$$

$$f(v_i) = 4i - 2; 1 \le i \le n - 1$$

$$f(w_i) = 4i; 1 \le i \le n - 1$$

It can be easily verified that the induced edge labels of Q_n are 2,4,6, ..., 8n - 8.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph Q_n is an even vertex equitable even graph.

Theorem 2.7The subdivision of quadrilateral snake $S(Q_n)$ is an even vertex equitable even graph.

Proof: Let P_n be a path u_1, u_2, \ldots, u_n .

Let
$$V(S(Q_n)) = \{v_i, w_i, x_i, y_i, z_i, u'_i : 1 \le i \le n - 1\} \cup \{u_i : 1 \le i \le n\}$$
 and
 $E(S(Q_n)) = \{u_i u'_i, u'_i u_{i+1}, u_i x_i, u_{i+1} y_i, v_i x_i, w_i y_i, v_i z_i, z_i w_i : 1 \le i \le n - 1\}$. Then
 $S(Q_n)$ is of order $7n - 6$ and size $8n - 8$.

Define $f: V(S(Q_n)) \rightarrow A = \{0, 2, 4, \dots, 8n - 8\}$ as follows:

$$f(u_1) = 4;$$

$$f(u_{i+1}) = 8i; 1 \le i \le n-1$$

$$f(u'_1) = 8;$$

$$f(u'_i) = 8i - 2; 2 \le i \le n-1$$

$$f(v_i) = 8i - 6; 1 \le i \le n-1$$

$$f(z_1) = 2;$$

$$f(z_i) = 8i - 2; 2 \le i \le n-1$$

$$f(w_1) = 0;$$

$$f(w_i) = 8i - 4; 2 \le i \le n-1$$

$$f(x_1) = 6;$$

$$f(x_i) = 8i - 6; 2 \le i \le n-1$$

$$f(y_1) = 6;$$

$$f(y_i) = 8i; 2 \le i \le n-1$$

It can be easily verified that the induced edge labels of $S(Q_n)$ are 2,4,6, ..., 16n - 16.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $S(Q_n)$ is an even vertex equitable even graph.

Theorem 2.8 The double quadrilateral snake Q_n is an even vertex equitable even graph.

Proof: The quadrilateral snake is obtained from a path $u_1, u_2, ..., u_n$.

Let $V(D(Q_n)) = \{u_i : 1 \le i \le n\} \cup \{v_i, w_i, v'_i, w'_i : 1 \le i \le n-1\}$ and $E(D(Q_n)) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_{2i-1}v_i, u_{2i-1}v'_i, u_{2i}w'_i, v'_iw'_i, v_iw_i, u_{2i}w_i : 1 \le i \le n-1\}$. Then Q_n is of order 5n - 4 and size 7n - 7. Define $f: V(DQ_n) \to A = \begin{cases} 0, 2, 4, ..., 7n - 6 & if \ 7n - 7 \ is \ odd \ 0, 2, 4, ..., 7n - 7 & if \ 7n - 7 \ is \ even \end{cases}$ as follows: $f(u_i) = \begin{cases} 7i - 7 & if \ i \ is \ odd \ 7i - 6 \ if \ i \ is \ even \end{cases}; 1 \le i \le n$ $f(v_i) = \begin{cases} 7i - 5 & if \ i \ is \ odd \ 7i - 6 \ if \ i \ is \ even \end{cases}; 1 \le i \le n - 1$ $f(w_i) = \begin{cases} 7i - 3 & if \ i \ is \ odd \ 7i - 4 \ if \ i \ is \ even \end{cases}; 1 \le i \le n - 1$ $f(v_i) = \begin{cases} 7i - 3 & if \ i \ is \ odd \ 7i - 4 \ if \ i \ is \ even \end{cases}; 1 \le i \le n - 1$ $f(w_i) = \begin{cases} 7i - 3 & if \ i \ is \ odd \ 7i - 2 \ if \ i \ is \ even \end{cases}; 1 \le i \le n - 1$

It can be easily verified that the induced edge labels of DQ_n are 2,4,6, ..., 14n - 14.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph DQ_n is an even vertex equitable even graph.

Theorem 2.9 An alternate triangular snake $A(T_n)$ is an even vertex equitable even graph.

Proof: Let $u_1, u_2, ..., u_n$ be the vertices of path P_n . The graph $A(T_n)$ is obtained by joining the vertices u_i, u_{i+1} (alternately) to new vertex $v_i, 1 \le i \le n-1$ for even n and $1 \le i \le n-2$ for odd n.

Let $V(A(T_n)) = \{u_i : 1 \le i \le n\} \cup \{v_i : 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor\}$ and $E(A(T_n)) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_{2i-1} v_i : 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor\} \cup \{u_{2i} v_i : 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor\}$. Then

$$|V(A(T_n))| = \begin{cases} \frac{3n-1}{2} & \text{if } n \text{ is odd} \\ \frac{3n}{2} & \text{if } n \text{ is even} \end{cases}$$

$$|E(A(T_n))| = \begin{cases} 2n-2 & if \ n \ is \ odd \\ 2n-1 & if \ n \ is \ even \end{cases}$$

Define $f: V(A(T_n)) \to A = \begin{cases} 0, 2, 4, \dots, 2n & if \ 2n-1 \ is \ odd \\ 0, 2, 4, \dots, 2n-2 & if \ 2n-2 \ is \ even \end{cases}$ as follows:
$$f(u_{2i-1}) = 4i - 4 \ ; \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$$

$$f(u_{2i}) = 4i \ ; \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$$

$$f(v_i) = 4i - 2 \ ; \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$$

It can be easily verified that the induced edge labels of $A(T_n)$ are 2,4,6,...,4n - 2 if n is even and 2,4,6,...,4n - 4 if n is odd.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $A(T_n)$ is an even vertex equitable even graph.

Theorem 2.10 The double alternate triangular snake $DA(T_n)$ is an even vertex equitable even graph.

Proof: Let u_1, u_2, \dots, u_n be the vertices of path P_n .

$$Let V(DA(T_n)) = \{u_i : 1 \le i \le n\} \cup \{v_i, w_i : 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \} and \\ E(DA(T_n)) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_{2i-1} v_i, u_{2i-1} w_i : 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \} \cup \{u_{2i} v_i, u_{2i} w_i : 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \} \\ i \le \left\lfloor \frac{n}{2} \right\rfloor \}$$
Then

. Then

$$|V(DA(T_n))| = \begin{cases} 2n-1 & \text{if } n \text{ is odd} \\ 2n & \text{if } n \text{ is even} \end{cases}$$

$$|E(DA(T_n))| = \begin{cases} 3n-3 & \text{if } n \text{ is odd} \\ 3n-1 & \text{if } n \text{ is even} \end{cases}$$

Define $f: V(DA(T_n)) \rightarrow A = \begin{cases} 0, 2, 4, \dots, 3n & \text{if } 3n-1 \text{ is odd} \\ 0, 2, 4, \dots, 3n-3 & \text{if } 3n-3 & \text{is even} \end{cases}$ as follows:

$$f(u_i) = \begin{cases} 3i-3 & \text{if } i \text{ is odd} \\ 3i & \text{if } i \text{ is even} \end{cases}; 1 \le i \le$$

$$f(v_i) = 6i-4; 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$$

$$f(w_i) = 6i-2; 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$$

It can be easily verified that the induced edge labels of $DA(T_n)$ are 2,4,6, ..., 6n - 2 if n is even and 2,4,6, ..., 6n - 6 if n is odd.

n

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $DA(T_n)$ is an even vertex equitable even graph.

REFERENCES

- J. A. Gallian, "A Dyamic Survey of Graph Labeling", *The Electronic J.Combin.*, 17 (2015) #DS6.
- 2. F. Harary, Graph Theory, Addison-wesley, Reading, Mass 1972.
- A. Lourdusamy and M. Seenivasan, "Vertex Equitable labeling of graphs", *Journal of Discrete Mathematical Sciences & Cryptography*, 11(6) (2008) 727-735.
- 4. A. Lourdusamy, J. Shobana Mary and F. Patrick, "Even Vertex Equitable Even Labeling", (*Submitted for publication*)
- 5. S. K. Vaidya and N. B. Vyas, "Even Mean Labeling for Path and Bistar related Graphs", *International Journal of Graph Theory*, 1(4) (2013) 122-130.
- S. K. Vaidya and N. B. Vyas, "Product Cordial Labeling for Alternate Snake Graphs", Malaya Journal of Matematik, 2(3) (2014) 188-196.