

EVEN VERTEX EQUITABLE EVEN LABELING FOR
 PATH RELATED GRAPHS

A. Lourdusamy ${ }^{1}$, J. Shobana Mary ${ }^{2}$ and F.Patrick ${ }^{3}$
${ }^{1 \& 3}$ Department of Mathematics,
St. Xavier's College, Palayamkottai - 627002, India.
${ }^{2}$ M.Sc. Student, Reg. No: 144821ER016,
Department of Mathematics
St. Antony's College of Arts and Science for Women,
Thamaraipadi, Dindigul - 624005, India.
${ }^{1}$ Email: lourdusamy15@gmail.com
${ }^{2}$ Email: jsom17@gmail.com
${ }^{3}$ Email: patrick881990@gmail.com
Abstract: Let G be a graph with p vertices and q edges and $A=\{0,2,4, \ldots, q+1\}$ if q is odd or $A=\{0,2,4, \ldots, q\}$ if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling $f: V(G) \rightarrow A$ that induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$ such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $2,4, \ldots, 2 q$, where $v_{f}(a)$ be the number of vertices v with $f(v)=a$ for $a \in A$. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph. In this paper, we prove that square of path, $S\left(P_{n} \odot K_{1}\right), S^{\prime}\left(P_{n}\right), T\left(P_{n}\right)$, graph obtained by duplication of each vertex by an edge in P_{n}, quadrilateral snake, $S\left(Q_{n}\right)$, $D\left(Q_{n}\right), A\left(T_{n}\right)$ and $D A\left(T_{n}\right)$ are even vertex equitable even graphs.

Keywords: vertex equitable labeling, even vertex equitable even labeling,
AMS Mathematics Subject Classification (2010): 05C78
(Received : $3{ }^{\text {rd }}$ October 2015 ; Accepted : $3{ }^{\text {rd }}$ March 2016)

1. INTRODUCTION

All graphs considered here are simple, finite, connected and undirected. Let $G(V, E)$ be a graph with p vertices and q edges. We follow the basic notations and terminologies of graph theory as in [2]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions and a detailed survey of graph labeling can be found in [1]. The concept of vertex equitable labeling was introduced by Lourdusamy and Seenivasan [3]. We introduced the concept of even vertex equitable even labeling in [4].

Definition 1.1: Let G be a graph with p vertices and q edges and $A=\{0,2,4, \ldots, q+1\}$ if q is odd or $A=\{0,2,4, \ldots, q\}$ if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling $f: V(G) \rightarrow A$ that induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$ such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $2,4, \ldots, 2 q$, where $v_{f}(a)$ be the number of vertices v with $f(v)=a$ for $a \in A$. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph.

Definition 1.2: For a simple connected graph G the square of graph G is denoted by G^{2} and defined as the graph with the same vertex set as of G and two vertices are adjacent in G^{2} if they are at a distance 1 or 2 apart in G.

Definition 1.3: The subdivision of graph $S(G)$ is obtained from G by subdividing each edge of G with a vertex.

Definition 1.4: The corona $G_{1} \odot G_{2}$ of two graphs $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ is defined as the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining the $i^{\text {th }}$ vertex of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition 1.5: For a graph G the splitting $\operatorname{graph} S\left(G^{\prime}\right)$ of graph G is obtained by adding a new vertex v^{\prime} corresponding to each vertex v of G such that $N(v)=N\left(v^{\prime}\right)$.

Definition 1.6: For every vertex $v \in V(G)$, the open neighbourhood set $N(v)$ is the set of all vertices adjacent to v in G.

Definition 1.7: Duplication of a vertex v_{k} by a new edge $e=v_{k}^{\prime} v_{k}^{\prime \prime}$ in a graph G produces a new graph G^{\prime} such that $N\left(v_{k}^{\prime}\right) \cap N\left(v_{k}^{\prime \prime}\right)=v_{k}$.

Definition 1.8: The total $\operatorname{graph} T(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G.

Definition 1.9: A quadrilateral snake Q_{n} is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i}, $u_{i}+1$ to new vertices v_{i}, w_{i} respectively and then joining v_{i} and w_{i}. That is every edge of the path is replaced by a cycle C_{4}.

Definition 1.10: A double quadrilateral snake $D\left(Q_{n}\right)$ consists of two quadrilateral snakes that have a common path.

Definition 1.11: An alternate triangular snake $A\left(T_{n}\right)$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and $u_{i}+1$ (alternatively) to newvertex v_{i}. That is every alternate edge of a path is replaced by C_{3}.

Definition 1.12: A double alternate triangular snake $D A\left(T_{n}\right)$ consists of two alternate triangular snakes that have a common path. That is, a double alternate triangular snake is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and $u_{i}+1$ (alternatively) to two new vertices v_{i} and w_{i}.

2. MAIN RESULTS

Theorem 2.1 The graph P_{n}^{2} is an even vertex equitable even graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of P_{n}^{2}. Then P_{n}^{2} is of order n and size $2 n-3$.
Define $f: V\left(P_{n}^{2}\right) \rightarrow A=\{0,2,4 \ldots, 2 n-2\}$ as follows:

$$
f\left(u_{i}\right)=2 i-2 ; 1 \leq i \leq n .
$$

It can be easily verified that the induced edge labels of P_{n}^{2} are $2,4,6, \ldots, 4 n-6$.
Thus, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$.
Hence the graph P_{n}^{2} is an even vertex equitable even graph.
Theorem 2.2The graph $S\left(P_{n} \odot K_{1}\right)$ is an even vertex equitable even graph.
Proof: Let $V\left(P_{n} \odot K_{1}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and

$$
E\left(P_{n} \odot K_{1}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} .
$$

Let v_{i}^{z} be the newly added vertex between u_{i} and v_{i}. Let u_{i}^{\prime} be the newly added vertex between u_{i} and u_{i+1}. Then $S\left(P_{n} \odot K_{1}\right)$ is of order $4 n-1$ and size $4 n-2$.

Define $f: V\left(S\left(P_{n} \odot K_{1}\right)\right) \rightarrow A=\{0,2,4 \ldots, 4 n-2\}$ as follows:

$$
\left.\begin{array}{l}
f\left(u_{i}\right)=\left\{\begin{array}{ll}
4 i-2 & \text { if } \text { i is odd } \\
4 i-4 & \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n\right. \\
f\left(v_{i}\right)=\left\{\begin{array}{ll}
4 i-4 & \text { if } i \text { is odd } \\
4 i-2 & \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n\right.
\end{array}\right\} \begin{aligned}
& f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{cc}
4 i & \text { if } i \text { is odd } \\
4 i+2 & \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n-1\right.
\end{aligned} \begin{aligned}
& f\left(v_{1}^{\prime}\right)=2 ; \\
& f\left(v_{i}^{\prime}\right)=\left\{\begin{array}{ll}
4 i-4 & \text { if } i \text { is odd } \\
4 i-2 & \text { if } i \text { is even }
\end{array} ; 2 \leq i \leq n\right.
\end{aligned}
$$

It can be easily verified that the induced edge labels of $S\left(P_{n} \odot K_{1}\right)$ are $2,4,6, \ldots, 8 n-4$.
Thus, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$.
Hence the graph $S\left(P_{n} \odot K_{1}\right)$ is an even vertex equitable even graph.
Theorem 2.3 The splitting graph $S^{\prime}\left(P_{n}\right)$ is an even vertex equitable even graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of P_{n} and $u_{1}, u_{2}, \ldots, u_{n}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$ be the vertices of $S^{\prime}\left(P_{n}\right)$. Then $S^{\prime}\left(P_{n}\right)$ is of order $2 n$ and size $3(n-1)$.

Define $f: V\left(S^{\prime}\left(P_{n}\right)\right) \rightarrow A=\left\{\begin{array}{ll}0,2,4, \ldots, 3(n-1)+1 & \text { if } 3(n-1) \text { is odd } \\ 0,2,4, \ldots, 3(n-1) & \text { if } 3(n-1) \text { is even }\end{array}\right.$ as follows:
Case (i): n is odd,$n>3$.

$$
\begin{aligned}
& f\left(u_{1}\right)=0 ; f\left(u_{2}\right)=2 ; \\
& f\left(u_{n-1}\right)=3(n-1) ; \\
& f\left(u_{n}\right)=3(n-1)-2 ; \\
& f\left(u_{i}\right)=\left\{\begin{array}{ll}
3 i-1 & \text { if } i \text { is odd } \\
3 i-2 & \text { if } i \text { is even }
\end{array} 3 \leq i \leq n-2\right.
\end{aligned}
$$

$$
\begin{aligned}
& f\left(u_{1}^{\prime}\right)=0 ; f\left(v_{2}^{\prime}\right)=2 ; \\
& f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{ll}
3 i-3 & \text { if } i \text { is odd } \\
3 i-6 & \text { if } i \text { is even }
\end{array}, 3 \leq i \leq n\right.
\end{aligned}
$$

Case (ii): n is even

$$
\left.\begin{array}{l}
f\left(u_{i}\right)=\left\{\begin{array}{ll}
3 i-3 & \text { if } i \text { is odd } \\
3 i-2 & \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n\right.
\end{array}\right\} \begin{aligned}
& 3\left(u_{i}^{\prime}\right)=\left\{\begin{array}{ll}
3 i-1 & \text { if } i \text { is odd } \\
3 i-4 & \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n\right.
\end{aligned}
$$

It can be easily verified that the induced edge labels of $S^{\prime}\left(P_{n}\right)$ are $2,4,6, \ldots, 6(n-1)$.
Thus, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$.
Hence the graph $S^{\prime}\left(P_{n}\right)$ is an even vertex equitable even graph.
Theorem 2.4 The total graph $T\left(P_{n}\right)$ is an even vertex equitable even graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of P_{n}. Let $V\left(T\left(P_{n}\right)\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right\}$.
Then $T\left(P_{n}\right)$ is of order $2 n-1$ and size $4 n-5$.
Define $f: V\left(T\left(P_{n}\right)\right) \rightarrow A=\{0,2,4, \ldots, 4 n-4\}$ as follows:

$$
\begin{aligned}
& f\left(u_{1}\right)=0 ; \\
& f\left(u_{i}\right)=4 i-6 ; 2 \leq i \leq n \\
& f\left(u_{i}^{\prime}\right)=4 i ; 1 \leq i \leq n-1
\end{aligned}
$$

It can be easily verified that the induced edge labels of $T\left(P_{n}\right)$ are $2,4,6, \ldots, 8 n-10$.
Thus, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$.
Hence the graph $T\left(P_{n}\right)$ is an even vertex equitable even graph.
Theorem 2.5 The graph obtained by duplication of each vertex by an edge in P_{n} is an even vertex equitable even graph.

Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n} and G be the graph obtained by duplication of each vertex u_{i} of the path P_{n} by an edge $u_{i}^{\prime} u_{i}^{\prime \prime}$ for $1 \leq i \leq n$ at a time.

Let $V(G)=\left\{u_{i}, u_{i}^{\prime}, u_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$ and
$E(G)=\left\{u_{i} u_{i}^{\prime}, u_{i} u_{i}^{\prime \prime}, u_{i}^{\prime} u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. Then G is of order $3 n$ and size $4 n-1$. Define $f: V(G) \rightarrow A=\{0,2,4, \ldots, 4 n\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{ll}
4 i-4 & \text { if } i \text { is odd } \\
4 i & \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n\right. \\
& f\left(u_{i}^{\prime}\right)=4 i-2 ; 1 \leq i \leq n \\
& f\left(u_{i}^{\prime \prime}\right)=\left\{\begin{array}{cc}
4 i & \text { if } i \text { is odd } \\
4 i-4 & \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n\right.
\end{aligned}
$$

It can be easily verified that the induced edge labels of G are $2,4,6, \ldots, 8 n-2$.
Thus, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$.
Hence the graph obtained by duplication of each vertex by an edge in P_{n} is an even vertex equitable even graph.

Theorem 2.6 The quadrilateral snake Q_{n} is an even vertex equitable even graph.
Proof: The quadrilateral snake is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$. By joining u_{i}, u_{i+1} to the new vertices v_{i}, w_{i} represented and joining v_{i} and w_{i} for $1 \leq i \leq n-1$. Then Q_{n} is of order $3 n-2$ and size $4 n-4$.

Define $f: V\left(Q_{n}\right) \rightarrow A=\{0,2,4, \ldots, 4 n-4\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)=4 i-4 ; 1 \leq i \leq n \\
& f\left(v_{i}\right)=4 i-2 ; 1 \leq i \leq n-1 \\
& f\left(w_{i}\right)=4 i ; 1 \leq i \leq n-1
\end{aligned}
$$

It can be easily verified that the induced edge labels of Q_{n} are $2,4,6, \ldots, 8 n-8$.
Thus, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$.
Hence the graph Q_{n} is an even vertex equitable even graph.
Theorem 2.7The subdivision of quadrilateral snake $S\left(Q_{n}\right)$ is an even vertex equitable even graph.

Proof: Let P_{n} be a path $u_{1}, u_{2}, \ldots, u_{n}$.
Let $V\left(S\left(Q_{n}\right)\right)=\left\{v_{i}, w_{i}, x_{i}, y_{i}, z_{i}, u_{i}^{\prime}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(Q_{n}\right)\right)=\left\{u_{i} u_{i}^{\prime}, u_{i}^{\prime} u_{i+1}, u_{i} x_{i}, u_{i+1} y_{i}, v_{i} x_{i}, w_{i} y_{i}, v_{i} z_{i}, z_{i} w_{i}: 1 \leq i \leq n-1\right\}$.Then $S\left(Q_{n}\right)$ is of order $7 n-6$ and size $8 n-8$.

Define $f: V\left(S\left(Q_{n}\right)\right) \rightarrow A=\{0,2,4, \ldots, 8 n-8\}$ as follows:

$$
\begin{aligned}
& f\left(u_{1}\right)=4 ; \\
& f\left(u_{i+1}\right)=8 i ; 1 \leq i \leq n-1 \\
& f\left(u_{1}^{\prime}\right)=8 ; \\
& f\left(u_{i}^{\prime}\right)=8 i-2 ; 2 \leq i \leq n-1 \\
& f\left(v_{i}\right)=8 i-6 ; 1 \leq i \leq n-1 \\
& f\left(z_{1}\right)=2 ; \\
& f\left(z_{i}\right)=8 i-2 ; 2 \leq i \leq n-1 \\
& f\left(w_{1}\right)=0 ; \\
& f\left(w_{i}\right)=8 i-4 ; 2 \leq i \leq n-1 \\
& f\left(x_{1}\right)=6 ; \\
& f\left(x_{i}\right)=8 i-6 ; 2 \leq i \leq n-1 \\
& f\left(y_{1}\right)=6 ; \\
& f\left(y_{i}\right)=8 i ; 2 \leq i \leq n-1
\end{aligned}
$$

It can be easily verified that the induced edge labels of $S\left(Q_{n}\right)$ are $2,4,6, \ldots, 16 n-16$.
Thus, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$.
Hence the graph $S\left(Q_{n}\right)$ is an even vertex equitable even graph.
Theorem 2.8 The double quadrilateral snake Q_{n} is an even vertex equitable even graph.
Proof: The quadrilateral snake is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$.

Let $V\left(D\left(Q_{n}\right)\right)=\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}, w_{i}, v_{i}^{\prime}, w_{i}^{\prime}: 1 \leq i \leq n-1\right\}$ and $E\left(D\left(Q_{n}\right)\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{2 i-1} v_{i}, u_{2 i-1} v_{i}^{\prime}, u_{2 i} w_{i}^{\prime}, v_{i}^{\prime} w_{i}^{\prime}, v_{i} w_{i}, u_{2 i} w_{i}: 1 \leq i \leq\right.$ $n-1\}$
. Then Q_{n} is of order $5 n-4$ and size $7 n-7$.
Define $f: V\left(D Q_{n}\right) \rightarrow A=\left\{\begin{array}{ll}0,2,4, \ldots, 7 n-6 & \text { if } 7 n-7 \text { is odd } \\ 0,2,4, \ldots, 7 n-7 & \text { if } 7 n-7 \text { is even }\end{array}\right.$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{l}
7 i-7 \text { if } i \text { is odd } \\
7 i-6 \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{l}
7 i-5 \text { if } i \text { is odd } \\
7 i-6 \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n-1\right. \\
& f\left(w_{i}\right)=\left\{\begin{array}{l}
7 i-3 \text { if } \text { i is odd } \\
7 i-4 \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n-1\right. \\
& f\left(v_{i}^{\prime}\right)=\left\{\begin{array}{l}
7 i-3 \text { if } \text { i is odd } \\
7 i-2 \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n-1\right. \\
& f\left(w_{i}^{\prime}\right)=\left\{\begin{array}{ll}
7 i-1 & \text { if } \text { i is odd } \\
7 i \quad \text { if } i \text { is even }
\end{array} ; 1 \leq i \leq n-1\right.
\end{aligned}
$$

It can be easily verified that the induced edge labels of $D Q_{n}$ are $2,4,6, \ldots, 14 n-14$.
Thus, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$.
Hence the graph $D Q_{n}$ is an even vertex equitable even graph.
Theorem 2.9 An alternate triangular snake $A\left(T_{n}\right)$ is an even vertex equitable even graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of path P_{n}. The graph $A\left(T_{n}\right)$ is obtained by joining the vertices u_{i}, u_{i+1} (alternately) to new vertex $v_{i}, 1 \leq i \leq n-1$ for even n and $1 \leq i \leq n-2$ for odd n.
Let $V\left(A\left(T_{n}\right)\right)=\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}: 1 \leq i \leq\left[\frac{n}{2}\right\}\right\}$ and
$E\left(A\left(T_{n}\right)\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{2 i-1} v_{i}: 1 \leq i \leq\left[\left.\frac{n}{2} \right\rvert\,\right\} \cup\left\{u_{2 i} v_{i}: 1 \leq i \leq\left[\frac{n}{2}\right]\right\}\right.$. Then

$$
\left|V\left(A\left(T_{n}\right)\right)\right|= \begin{cases}\frac{3 n-1}{2} & \text { if } n \text { is odd } \\ \frac{3 n}{2} & \text { if } n \text { is even }\end{cases}
$$

$$
\left|E\left(A\left(T_{n}\right)\right)\right|= \begin{cases}2 n-2 & \text { if } n \text { is odd } \\ 2 n-1 & \text { if } n \text { is even }\end{cases}
$$

Define $f: V\left(A\left(T_{n}\right)\right) \rightarrow A=\left\{\begin{array}{ll}0,2,4, \ldots, 2 n & \text { if } 2 n-1 \text { is odd } \\ 0,2,4, \ldots, 2 n-2 & \text { if } 2 n-2 \text { is even }\end{array}\right.$ as follows:

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)=4 i-4 ; 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& f\left(u_{2 i}\right)=4 i ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
& f\left(v_{i}\right)=4 i-2 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

It can be easily verified that the induced edge labels of $A\left(T_{n}\right)$ are $2,4,6, \ldots, 4 n-2$ if n is even and $2,4,6, \ldots, 4 n-4$ if n is odd.

Thus, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$.
Hence the graph $A\left(T_{n}\right)$ is an even vertex equitable even graph.
Theorem 2.10 The double alternate triangular snake $D A\left(T_{n}\right)$ is an even vertex equitable even graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of path P_{n}.
Let $V\left(D A\left(T_{n}\right)\right)=\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}, w_{i}: 1 \leq i \leq\left\lfloor\frac{n}{2}\right]\right\}$ and
$E\left(D A\left(T_{n}\right)\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{2 i-1} v_{i}, u_{2 i-1} w_{i}: 1 \leq i \leq\left|\frac{n}{2}\right|\right\} \cup\left\{u_{2 i} v_{i}, u_{2 i} w_{i}: 1 \leq\right.$ $\left.i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$
. Then

$$
\begin{aligned}
& \left|V\left(D A\left(T_{n}\right)\right)\right|= \begin{cases}2 n-1 & \text { if } n \text { is odd } \\
2 n & \text { if } n \text { is even }\end{cases} \\
& \left|E\left(D A\left(T_{n}\right)\right)\right|= \begin{cases}3 n-3 & \text { if } n \text { is odd } \\
3 n-1 & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

Define $f: V\left(D A\left(T_{n}\right)\right) \rightarrow A=\left\{\begin{array}{l}0,2,4, \ldots, 3 n \\ 0,2,4, \ldots, 3 n-3\end{array}\right.$ if $3 n-1$ is odd $3 n-3$ is even is follows:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{ll}
3 i-3 & \text { if } i \text { is odd } \\
3 i & \text { if } i \text { is even }
\end{array} 1 \leq i \leq n\right. \\
& f\left(v_{i}\right)=6 i-4 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
& f\left(w_{i}\right)=6 i-2 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

It can be easily verified that the induced edge labels of $D A\left(T_{n}\right)$ are $2,4,6, \ldots, 6 n-2$ if n is even and $2,4,6, \ldots, 6 n-6$ if n is odd.

Thus, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$.
Hence the graph $D A\left(T_{n}\right)$ is an even vertex equitable even graph.

REFERENCES

1. J. A. Gallian, "A Dyamic Survey of Graph Labeling",The Electronic J.Combin., 17 (2015) \#DS6.
2. F. Harary, Graph Theory, Addison-wesley, Reading, Mass 1972.
3. A. Lourdusamy and M. Seenivasan, "Vertex Equitable labeling of graphs", Journal of Discrete Mathematical Sciences \& Cryptography, 11(6) (2008) 727-735.
4. A. Lourdusamy, J. Shobana Mary and F. Patrick, "Even Vertex Equitable Even Labeling", (Submitted for publication)
5. S. K. Vaidya and N. B. Vyas, "Even Mean Labeling for Path and Bistar related Graphs", International Journal of Graph Theory, 1(4) (2013) 122-130.
6. S. K. Vaidya and N. B. Vyas, "Product Cordial Labeling for Alternate Snake Graphs", Malaya Journal of Matematik, 2(3) (2014) 188-196.
